{ "id": "1311.7016", "version": "v1", "published": "2013-11-27T15:50:04.000Z", "updated": "2013-11-27T15:50:04.000Z", "title": "Quadratic Non-residues in Short Intervals", "authors": [ "Sergei V. Konyagin", "Igor E. Shparlinski" ], "categories": [ "math.NT" ], "abstract": "We use the Burgess bound and combinatorial sieve to obtain an upper bound on the number of primes $p$ in a dyadic interval $[Q,2Q]$ for which a given interval $[u+1,u+\\psi(Q)]$ does not contain a quadratic non-residue modulo $p$. The bound is nontrivial for any function $\\psi(Q)\\to\\infty$ as $Q\\to\\infty$. This is an analogue of the well known estimates on the smallest quadratic non-residue modulo $p$ on average over primes $p$, which corresponds to the choice $u=0$.", "revisions": [ { "version": "v1", "updated": "2013-11-27T15:50:04.000Z" } ], "analyses": { "keywords": [ "short intervals", "smallest quadratic non-residue modulo", "dyadic interval", "upper bound", "combinatorial sieve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.7016K" } } }