{ "id": "1311.2785", "version": "v3", "published": "2013-11-12T14:17:26.000Z", "updated": "2014-05-14T07:21:32.000Z", "title": "On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs", "authors": [ "Anita Pasotti", "Marco Antonio Pellegrini" ], "comment": "Previously submitted with the title \"On BHR({1^a,2^b,t^c}) when t is even\"", "journal": "The Electronic Journal of Combinatorics Volume 21, Issue 2 (2014) #P2.30", "categories": [ "math.CO" ], "abstract": "In this paper we investigate a problem proposed by Marco Buratti, Peter Horak and Alex Rosa (denoted by BHR-problem) concerning Hamiltonian paths in the complete graph with prescribed edge-lengths. In particular we solve BHR({1^a,2^b,t^c}) for any even integer t>=4, provided that a+b>=t-1. Furthermore, for t=4,6,8 we present a complete solution of BHR({1^a,2^b,t^c}) for any positive integer a,b,c.", "revisions": [ { "version": "v3", "updated": "2014-05-14T07:21:32.000Z" } ], "analyses": { "subjects": [ "05C38" ], "keywords": [ "complete graph", "buratti-horak-rosa conjecture", "alex rosa", "concerning hamiltonian paths", "complete solution" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.2785P" } } }