{ "id": "1310.1772", "version": "v1", "published": "2013-10-07T13:17:34.000Z", "updated": "2013-10-07T13:17:34.000Z", "title": "Rational points on some Fermat curves and surfaces over finite fields", "authors": [ "Jose Felipe Voloch", "Michael E. Zieve" ], "comment": "8 pages", "doi": "10.1142/S1793042113500954", "categories": [ "math.NT", "math.AG" ], "abstract": "We give an explicit description of the F_{q^i}-rational points on the Fermat curve u^{q-1}+v^{q-1}+w^{q-1}=0 for each i=1,2,3. As a consequence, we observe that for any such point (u,v,w), the product uvw is a cube in F_{q^i}. We also describe the F_{q^2}-rational points on the Fermat surface u^{q-1}+v^{q-1}+w^{q-1}+x^{q-1}=0, and show that the product of the coordinates of any such points is a square.", "revisions": [ { "version": "v1", "updated": "2013-10-07T13:17:34.000Z" } ], "analyses": { "subjects": [ "11G20", "14G15" ], "keywords": [ "fermat curve", "finite fields", "rational points", "explicit description", "product uvw" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.1772V" } } }