{ "id": "1308.2466", "version": "v1", "published": "2013-08-12T05:35:20.000Z", "updated": "2013-08-12T05:35:20.000Z", "title": "Singular Phenomena of Solutions for Nonlinear Diffusion Equations involving $p(x)$-\\hbox{Laplacian} Operator", "authors": [ "Bin Guo", "Wenjie Gao" ], "comment": "any comments are welcome", "categories": [ "math.AP" ], "abstract": "The authors of this paper study singular phenomena(vanishing and blowing-up in finite time) of solutions to the homogeneous $\\hbox{Dirichlet}$ boundary value problem of nonlinear diffusion equations involving $p(x)$-\\hbox{Laplacian} operator and a nonlinear source. The authors discuss how the value of the variable exponent $p(x)$ and initial energy(data) affect the properties of solutions. At the same time, we obtain the critical extinction and blow-up exponents of solutions.", "revisions": [ { "version": "v1", "updated": "2013-08-12T05:35:20.000Z" } ], "analyses": { "subjects": [ "35K55", "35K40", "35B65" ], "keywords": [ "nonlinear diffusion equations", "paper study singular phenomena", "boundary value problem", "initial energy", "nonlinear source" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.2466G" } } }