{ "id": "1308.0060", "version": "v1", "published": "2013-07-31T22:55:30.000Z", "updated": "2013-07-31T22:55:30.000Z", "title": "Integral points on quadratic twists and linear growth for certain elliptic fibrations", "authors": [ "Pierre Le Boudec" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We prove that the number of rational points of bounded height on certain del Pezzo surfaces of degree 1 defined over Q grows linearly, as predicted by Manin's conjecture. Along the way, we investigate the average number of integral points of small naive height on quadratic twists of a fixed elliptic curve with full rational 2-torsion.", "revisions": [ { "version": "v1", "updated": "2013-07-31T22:55:30.000Z" } ], "analyses": { "subjects": [ "11D45", "11G05", "14G05" ], "keywords": [ "integral points", "quadratic twists", "linear growth", "elliptic fibrations", "del pezzo surfaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.0060L" } } }