{ "id": "1307.2023", "version": "v2", "published": "2013-07-08T10:29:30.000Z", "updated": "2013-10-27T06:26:44.000Z", "title": "Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields", "authors": [ "Junpeng Cao", "Wen-Li Yang", "Kangjie Shi", "Yupeng Wang" ], "comment": "30 pages, 2 tables, published version, numerical check is added. arXiv admin note: text overlap with arXiv:1306.1742", "journal": "Nucl. Phys. B 877 [FS] (2013) 152-175", "categories": [ "cond-mat.stat-mech", "hep-th", "math-ph", "math.MP" ], "abstract": "The anisotropic spin-1/2 chains with arbitrary boundary fields are diagonalized with the off-diagonal Bethe ansatz method. Based on the properties of the R-matrix and the K-matrices, an operator product identity of the transfer matrix is constructed at some special points of the spectral parameter. Combining with the asymptotic behavior (for XXZ case) or the quasi-periodicity properties (for XYZ case) of the transfer matrix, the extended T-Q ansatzs and the corresponding Bethe ansatz equations are derived.", "revisions": [ { "version": "v2", "updated": "2013-10-27T06:26:44.000Z" } ], "analyses": { "keywords": [ "off-diagonal bethe ansatz solutions", "arbitrary boundary fields", "anisotropic", "off-diagonal bethe ansatz method", "transfer matrix" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.nuclphysb.2013.10.001", "journal": "Nuclear Physics B", "year": 2013, "month": "Dec", "volume": 877, "number": 1, "pages": 152 }, "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1241865, "adsabs": "2013NuPhB.877..152C" } } }