{ "id": "1306.2669", "version": "v1", "published": "2013-06-11T22:09:21.000Z", "updated": "2013-06-11T22:09:21.000Z", "title": "Hilbert's Tenth Problem over Function Fields of Positive Characteristic Not Containing the Algebraic Closure of a Finite Field", "authors": [ "Kirsten Eisentraeger", "Alexandra Shlapentokh" ], "categories": [ "math.NT", "math.LO" ], "abstract": "We prove that the existential theory of any function field $K$ of characteristic $p> 0$ is undecidable in the language of rings provided that the constant field does not contain the algebraic closure of a finite field. We also extend the undecidability proof for function fields of higher transcendence degree to characteristic 2 and show that the first-order theory of {\\bf any} function field of positive characteristic is undecidable in the language of rings without parameters.", "revisions": [ { "version": "v1", "updated": "2013-06-11T22:09:21.000Z" } ], "analyses": { "subjects": [ "03C07", "03D35", "11U05" ], "keywords": [ "function field", "algebraic closure", "finite field", "positive characteristic", "higher transcendence degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2669E" } } }