{ "id": "1306.1219", "version": "v1", "published": "2013-06-05T19:51:13.000Z", "updated": "2013-06-05T19:51:13.000Z", "title": "The probability that a character value is zero for the symmetric group", "authors": [ "Alexander R. Miller" ], "comment": "3 pages", "categories": [ "math.GR", "math.CO", "math.PR" ], "abstract": "We consider random character values X(g) of the symmetric group on n symbols, where X is chosen at random from the set of irreducible characters and g is chosen at random from the group, and we show that X(g)=0 with probability tending to one as n tends to infinity.", "revisions": [ { "version": "v1", "updated": "2013-06-05T19:51:13.000Z" } ], "analyses": { "keywords": [ "symmetric group", "probability", "random character values", "irreducible characters" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.1219M" } } }