{ "id": "1304.7587", "version": "v2", "published": "2013-04-29T08:10:03.000Z", "updated": "2013-08-14T06:54:34.000Z", "title": "Roots of the Ehrhart polynomial of hypersimplices", "authors": [ "Hidefumi Ohsugi", "Kazuki Shibata" ], "comment": "18 pages, 8 figures", "categories": [ "math.CO" ], "abstract": "The Ehrhart polynomial of the $d$-th hypersimplex $\\Delta(d,n)$ of order $n$ is studied. By computational experiments and a known result for $d=2$, we conjecture that the real part of every roots of the Ehrhart polynomial of $\\Delta(d,n)$ is negative and larger than $- \\frac{n}{d}$ if $n \\geq 2d$. In this paper, we show that the conjecture is true when $d=3$ and that every root $a$ of the Ehrhart polynomial of $\\Delta(d,n)$ satisfies $-\\frac{n}{d} < {\\rm Re} (a) < 1$ if $4 \\leq d \\ll n$.", "revisions": [ { "version": "v2", "updated": "2013-08-14T06:54:34.000Z" } ], "analyses": { "subjects": [ "52B20" ], "keywords": [ "ehrhart polynomial", "hypersimplices", "th hypersimplex", "computational experiments", "conjecture" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.7587O" } } }