{ "id": "1304.0693", "version": "v1", "published": "2013-04-02T16:59:35.000Z", "updated": "2013-04-02T16:59:35.000Z", "title": "On cubic multisections of Eisenstein series", "authors": [ "Andrew Alaniz", "Tim Huber" ], "categories": [ "math.NT" ], "abstract": "A systematic procedure for generating cubic multisections of Eisenstein series is given. The relevant series are determined from Fourier expansions for Eisenstein series by restricting the congruence class of the summation index modulo three. We prove that the resulting series are rational functions of \\eta(\\tau) and \\eta(3\\tau), where \\eta is the Dedekind eta function. A more general treatment of cubic dissection formulas is given by describing the dissection operators in terms of linear transformations. These operators exhibit properties that mirror those of similarly defined quintic operators.", "revisions": [ { "version": "v1", "updated": "2013-04-02T16:59:35.000Z" } ], "analyses": { "subjects": [ "11F11", "11F33" ], "keywords": [ "eisenstein series", "cubic dissection formulas", "summation index modulo", "dedekind eta function", "generating cubic multisections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.0693A" } } }