{ "id": "1302.5519", "version": "v1", "published": "2013-02-22T08:41:33.000Z", "updated": "2013-02-22T08:41:33.000Z", "title": "Uniform hyperbolicity of the curve graph via surgery sequences", "authors": [ "Matt Clay", "Kasra Rafi", "Saul Schleimer" ], "comment": "18 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "We prove that the curve graph $\\calC^{(1)}(S)$ is Gromov-hyperbolic with a constant of hyperbolicity independent of the surface $S$. The proof is based on the proof of hyperbolicity of the free splitting complex by Handel and Mosher, as interpreted by Hilion and Horbez.", "revisions": [ { "version": "v1", "updated": "2013-02-22T08:41:33.000Z" } ], "analyses": { "subjects": [ "57M99", "32F60" ], "keywords": [ "curve graph", "surgery sequences", "uniform hyperbolicity", "free splitting complex", "hyperbolicity independent" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.5519C" } } }