{ "id": "1211.4468", "version": "v1", "published": "2012-11-19T15:45:03.000Z", "updated": "2012-11-19T15:45:03.000Z", "title": "New Lower Bounds for the Least Common Multiples of Arithmetic Progressions", "authors": [ "Rongjun Wu", "Qianrong Tan", "Shaofang Hong" ], "comment": "4 pages. To appear in Chinese Annals of Mathematics (Series B)", "journal": "Chin. Ann. Math. 34B (2013), 861-864", "categories": [ "math.NT" ], "abstract": "For relatively prime positive integers $u_0$ and $r$ and for $0\\le k\\le n$, define $u_k:=u_0+kr$. Let $L_n:={\\rm lcm}(u_0, u_1, ..., u_n)$ and let $a, l\\ge 2$ be any integers. In this paper, we show that, for integers $\\alpha \\geq a$ and $r\\geq \\max(a, l-1)$ and $n\\geq l\\alpha r$, we have $$L_n\\geq u_0r^{(l-1)\\alpha +a-l}(r+1)^n.$$ Particularly, letting $l=3$ yields an improvement to the best previous lower bound on $L_n$ obtained by Hong and Kominers.", "revisions": [ { "version": "v1", "updated": "2012-11-19T15:45:03.000Z" } ], "analyses": { "keywords": [ "lower bound", "common multiples", "arithmetic progressions", "relatively prime positive integers", "improvement" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.4468W" } } }