{ "id": "1211.1797", "version": "v3", "published": "2012-11-08T09:19:31.000Z", "updated": "2014-10-26T09:05:39.000Z", "title": "Representing and counting the subgroups of the group Z_m x Z_n", "authors": [ "Mario Hampejs", "Nicki Holighaus", "László Tóth", "Christoph Wiesmeyr" ], "comment": "12 pages, 1 figure, revised", "journal": "Journal of Numbers, Volume 2014, Article ID 491428", "categories": [ "math.GR", "math.CO", "math.NT" ], "abstract": "We deduce a simple representation and the invariant factor decompositions of the subgroups of the group $\\Bbb{Z}_m \\times \\Bbb{Z}_n$, where $m$ and $n$ are arbitrary positive integers. We obtain formulas for the total number of subgroups and the number of subgroups of a given order.", "revisions": [ { "version": "v2", "updated": "2013-12-03T10:49:18.000Z", "title": "On the subgroups of the group Z_m x Z_n", "abstract": "We deduce a simple representation and the invariant factor decompositions of the subgroups of the group Z_m x Z_n, where m and n are arbitrary positive integers. We obtain formulas for the total number of subgroups and the number of subgroups of a given order.", "comment": "12 pages, 1 figure, revised, the invariant factor decompositions of the subgroups are also given", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-10-26T09:05:39.000Z" } ], "analyses": { "subjects": [ "20K01", "20K27", "05A15", "11A25" ], "keywords": [ "invariant factor decompositions", "total number", "simple representation", "arbitrary positive integers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.1797H" } } }