{ "id": "1205.1596", "version": "v1", "published": "2012-05-08T06:11:11.000Z", "updated": "2012-05-08T06:11:11.000Z", "title": "Bounds on the diameter of Cayley graphs of the symmetric group", "authors": [ "John Bamberg", "Nick Gill", "Thomas Hayes", "Harald Helfgott", "Ákos Seress", "Pablo Spiga" ], "comment": "17 pages, 6 tables", "categories": [ "math.GR", "math.CO" ], "abstract": "In this paper we are concerned with the conjecture that, for any set of generators S of the symmetric group of degree n, the word length in terms of S of every permutation is bounded above by a polynomial of n. We prove this conjecture for sets of generators containing a permutation fixing at least 37% of the points.", "revisions": [ { "version": "v1", "updated": "2012-05-08T06:11:11.000Z" } ], "analyses": { "keywords": [ "symmetric group", "cayley graphs", "permutation", "conjecture" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1205.1596B" } } }