{ "id": "1204.5415", "version": "v2", "published": "2012-04-24T15:41:02.000Z", "updated": "2013-02-24T02:05:10.000Z", "title": "Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms", "authors": [ "Guoyou Qian", "Shaofang Hong" ], "comment": "8 pages. To appear in Archiv der Mathematik", "journal": "Arch. Math. 100 (2013), 337-345", "doi": "10.1007/s00013-013-0510-7", "categories": [ "math.NT" ], "abstract": "Let $l$ and $m$ be two integers with $l>m\\ge 0$, and let $a$ and $b$ be integers with $a\\ge 1$ and $a+b\\ge 1$. In this paper, we prove that $\\log {\\rm lcm}_{mn