{ "id": "1204.1745", "version": "v1", "published": "2012-04-08T16:53:57.000Z", "updated": "2012-04-08T16:53:57.000Z", "title": "Counting points of fixed degree and bounded height", "authors": [ "Martin Widmer" ], "journal": "Acta Arith. 140 (2009), 145-168", "doi": "10.4064/aa140-2-4", "categories": [ "math.NT" ], "abstract": "We consider the set of points in projective $n$-space that generate an extension of degree $e$ over given number field $k$, and deduce an asymptotic formula for the number of such points of absolute height at most $X$, as $X$ tends to infinity. We deduce a similar such formula with instead of the absolute height, a so-called adelic-Lipschitz height.", "revisions": [ { "version": "v1", "updated": "2012-04-08T16:53:57.000Z" } ], "analyses": { "subjects": [ "11R04", "11G50", "11G35" ], "keywords": [ "fixed degree", "bounded height", "counting points", "absolute height", "number field" ], "tags": [ "journal article" ], "publication": { "journal": "Acta Arithmetica", "year": 2009, "volume": 140, "number": 2, "pages": 145 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009AcAri.140..145W" } } }