{ "id": "1203.0272", "version": "v1", "published": "2012-03-01T19:25:28.000Z", "updated": "2012-03-01T19:25:28.000Z", "title": "Hyperconvex representations and exponential growth", "authors": [ "Andres Sambarino" ], "doi": "10.1017/etds.2012.170", "categories": [ "math.GR", "math.DS" ], "abstract": "Let $G$ be a real algebraic semi-simple Lie group and $\\Gamma$ be the fundamental group of a compact negatively curved manifold. In this article we study the limit cone, introduced by Benoist, and the growth indicator function, introduced by Quint, for a class of representations $\\rho:\\Gamma\\to G$ admitting a equivariant map from $\\partial\\Gamma$ to the Furstenberg boundary of $G$'s symmetric space together with a transversality condition. We then study how these objects vary with the representation.", "revisions": [ { "version": "v1", "updated": "2012-03-01T19:25:28.000Z" } ], "analyses": { "keywords": [ "exponential growth", "hyperconvex representations", "real algebraic semi-simple lie group", "growth indicator function", "objects vary" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.0272S" } } }