{ "id": "1201.5772", "version": "v2", "published": "2012-01-27T13:38:10.000Z", "updated": "2012-08-04T06:56:09.000Z", "title": "One-relator Kaehler groups", "authors": [ "Indranil Biswas", "Mahan Mj" ], "comment": "v2: 9pgs. no figs. Final version, to appear in \"Geometry and Topology\"", "journal": "Geometry & Topology 16 (2012) 2171-2186", "doi": "10.2140/gt.2012.16.2171", "categories": [ "math.GT", "math.AG", "math.GR" ], "abstract": "We prove that a one-relator group $G$ is K\\\"ahler if and only if either $G$ is finite cyclic or $G$ is isomorphic to the fundamental group of a compact orbifold Riemann surface of genus $g > 0$ with at most one cone point of order $n$: $$< a_1\\, b_1\\, \\,...\\, a_g\\, b_g\\, \\mid\\, (\\prod_{i=1}^g [a_i\\, b_i])^n>\\, .$$", "revisions": [ { "version": "v2", "updated": "2012-08-04T06:56:09.000Z" } ], "analyses": { "subjects": [ "57M50", "32Q15", "57M05", "14F35", "32J15" ], "keywords": [ "one-relator kaehler groups", "compact orbifold riemann surface", "one-relator group", "fundamental group", "cone point" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.5772B" } } }