{ "id": "1201.0049", "version": "v1", "published": "2011-12-30T01:57:55.000Z", "updated": "2011-12-30T01:57:55.000Z", "title": "Rough solutions of Einstein vacuum equations in CMCSH gauge", "authors": [ "Qian Wang" ], "categories": [ "math.AP", "gr-qc", "math.DG" ], "abstract": "In this paper, we consider very rough solutions to Cauchy problem for the Einstein vacuum equations in CMC spacial harmonic gauge, and obtain the local well-posedness result in $H^s, s>2$. The novelty of our approach lies in that, without resorting to the standard paradifferential regularization over the rough, Einstein metric $\\bg$, we manage to implement the commuting vector field approach to prove Strichartz estimate for geometric wave equation $\\Box_\\bg \\phi=0$ directly.", "revisions": [ { "version": "v1", "updated": "2011-12-30T01:57:55.000Z" } ], "analyses": { "keywords": [ "einstein vacuum equations", "rough solutions", "cmcsh gauge", "cmc spacial harmonic gauge", "geometric wave equation" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-014-2015-z" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1083242, "adsabs": "2012arXiv1201.0049W" } } }