{ "id": "1112.1139", "version": "v1", "published": "2011-12-05T15:26:51.000Z", "updated": "2011-12-05T15:26:51.000Z", "title": "Quantum Verification of Minimum Spanning Tree", "authors": [ "Mark Heiligman" ], "comment": "5 papges", "categories": [ "quant-ph", "cs.DS" ], "abstract": "Previous studies has shown that for a weighted undirected graph having $n$ vertices and $m$ edges, a minimal weight spanning tree can be found with $O^*(\\sqrt{mn})$ calls to the weight oracle. The present note shows that a given spanning tree can be verified to be a minimal weight spanning tree with only $O(n\\bigr)$ calls to the weight oracle and $O(n+\\sqrt{m}\\log n)$ total work.", "revisions": [ { "version": "v1", "updated": "2011-12-05T15:26:51.000Z" } ], "analyses": { "keywords": [ "minimum spanning tree", "quantum verification", "minimal weight spanning tree", "weight oracle", "total work" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.1139H" } } }