{ "id": "1112.0346", "version": "v1", "published": "2011-12-01T22:26:20.000Z", "updated": "2011-12-01T22:26:20.000Z", "title": "Statistics on Riemann zeros", "authors": [ "Ricardo Perez Marco" ], "comment": "47 pages, 75 figures", "categories": [ "math.NT", "math.CV" ], "abstract": "We numerically study the statistical properties of differences of zeros of Riemann zeta function and L-functions predicted by the theory of the e\\~ne product. In particular, this provides a simple algorithm that computes any non-real Riemann zeros from very large ones (\"self-replicating property of Riemann zeros\"). Also the algorithm computes the full sequence of non-real zeros of Riemann zeta function from the sequence of non-real zeros of any Dirichlet L-function (\"zeros of L-functions know about Riemann zeros\"). We also check that the first error to the convergence to the classical GUE statistic near 0 is a Fresnel distribution.", "revisions": [ { "version": "v1", "updated": "2011-12-01T22:26:20.000Z" } ], "analyses": { "subjects": [ "11M26" ], "keywords": [ "riemann zeta function", "non-real zeros", "non-real riemann zeros", "simple algorithm", "full sequence" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0346P" } } }