{ "id": "1111.6425", "version": "v1", "published": "2011-11-28T12:11:02.000Z", "updated": "2011-11-28T12:11:02.000Z", "title": "Generating the mass gap of the sine-Gordon model", "authors": [ "V. Pangon" ], "comment": "4 pages, 6 figures (black and white)", "categories": [ "hep-th", "cond-mat.stat-mech", "cond-mat.str-el" ], "abstract": "We discuss in this study the possibility of finding a finite mass gap in the broken phase of the sine-Gordon model in $d=2$ using the functional flows. We demonstrate that the signal of the presence of massive excitations, a finite positively-curved {\\em blocked} potential around its minima, is recovered only in our treatment. The usual results based on the flow of the Fourier expansion of the {\\em blocked} action are then shown to actually fit a singularity.", "revisions": [ { "version": "v1", "updated": "2011-11-28T12:11:02.000Z" } ], "analyses": { "subjects": [ "11.10.Kk", "05.10.Cc", "11.10.Gh", "11.30.Qc" ], "keywords": [ "sine-gordon model", "finite mass gap", "broken phase", "functional flows", "generating" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "inspire": 963407, "adsabs": "2011arXiv1111.6425P" } } }