{ "id": "1110.4693", "version": "v1", "published": "2011-10-21T03:11:46.000Z", "updated": "2011-10-21T03:11:46.000Z", "title": "On the distribution of the number of points on a family of curves over finite fields", "authors": [ "Kit-Ho Mak", "Alexandru Zaharescu" ], "comment": "23 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $p$ be a large prime, $\\ell\\geq 2$ be a positive integer, $m\\geq 2$ be an integer relatively prime to $\\ell$ and $P(x)\\in\\mathbb{F}_p[x]$ be a polynomial which is not a complete $\\ell'$-th power for any $\\ell'$ for which $GCD(\\ell',\\ell)=1$. Let $\\mathcal{C}$ be the curve defined by the equation $y^{\\ell}=P(x)$, and take the points on $\\mathcal{C}$ to lie in the rectangle $[0,p-1]^2$. In this paper, we study the distribution of the number of points on $\\mathcal{C}$ inside a small rectangle among residue classes modulo $m$ when we move the rectangle around in $[0,p-1]^2$.", "revisions": [ { "version": "v1", "updated": "2011-10-21T03:11:46.000Z" } ], "analyses": { "subjects": [ "11G20", "11T55" ], "keywords": [ "finite fields", "distribution", "residue classes modulo", "integer relatively prime", "small rectangle" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.4693M" } } }