{ "id": "1110.0722", "version": "v3", "published": "2011-10-04T15:22:33.000Z", "updated": "2012-06-18T08:53:00.000Z", "title": "On the influence of the Segre Problem on the Mori cone of blown-up surfaces", "authors": [ "Fulvio Di Sciullo" ], "comment": "19 pages, 2 figures", "categories": [ "math.AG" ], "abstract": "We propose a generalization of SHGH Conjectures to a smooth projective surface Y: the so called Segre Problem. The study of linear systems on Y can be translated in terms of the Mori cone of the blow up $X = Bl_r Y$ at $r$ general points. Generalizing a result by de Fernex, we prove that if Segre Problem holds true, then a part of the Mori cone of $X$ does coincide with a part of the positive cone of $X$.", "revisions": [ { "version": "v3", "updated": "2012-06-18T08:53:00.000Z" } ], "analyses": { "subjects": [ "14E30" ], "keywords": [ "mori cone", "blown-up surfaces", "segre problem holds true", "smooth projective surface", "shgh conjectures" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.0722D" } } }