{ "id": "1109.6697", "version": "v2", "published": "2011-09-30T00:34:58.000Z", "updated": "2012-10-16T13:50:35.000Z", "title": "An asymptotic formula for representations of integers by indefinite hermitian forms", "authors": [ "Emilio A. Lauret" ], "comment": "To appear in Proceedings of the American Mathematical Society", "journal": "Proc. Amer. Math. Soc. 142 (2014), 1--14", "doi": "10.1090/S0002-9939-2013-11726-0", "categories": [ "math.NT" ], "abstract": "We fix a maximal order $\\mathcal O$ in $\\F=\\R,\\C$ or $\\mathbb{H}$, and an $\\F$-hermitian form $Q$ of signature $(n,1)$ with coefficients in $\\mathcal O$. Let $k\\in\\N$. By applying a lattice point theorem on the $\\F$-hyperbolic space, we give an asymptotic formula with an error term, as $t\\to+\\infty$, for the number $N_t(Q,-k)$ of integral solutions $x\\in\\mathcal O^{n+1}$ of the equation $Q[x]=-k$ satisfying $|x_{n+1}|\\leq t$.", "revisions": [ { "version": "v2", "updated": "2012-10-16T13:50:35.000Z" } ], "analyses": { "subjects": [ "11D45", "11E39", "58C40" ], "keywords": [ "indefinite hermitian forms", "asymptotic formula", "representations", "lattice point theorem", "maximal order" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.6697L" } } }