{ "id": "1109.5971", "version": "v2", "published": "2011-09-27T17:02:09.000Z", "updated": "2014-01-14T09:02:31.000Z", "title": "On viscosity solutions of path dependent PDEs", "authors": [ "Ibrahim Ekren", "Christian Keller", "Nizar Touzi", "Jianfeng Zhang" ], "comment": "Published in at http://dx.doi.org/10.1214/12-AOP788 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2014, Vol. 42, No. 1, 204-236", "doi": "10.1214/12-AOP788", "categories": [ "math.AP", "math.FA", "math.PR" ], "abstract": "In this paper we propose a notion of viscosity solutions for path dependent semi-linear parabolic PDEs. This can also be viewed as viscosity solutions of non-Markovian backward SDEs, and thus extends the well-known nonlinear Feynman-Kac formula to non-Markovian case. We shall prove the existence, uniqueness, stability and comparison principle for the viscosity solutions. The key ingredient of our approach is a functional It\\^{o} calculus recently introduced by Dupire [Functional It\\^{o} calculus (2009) Preprint].", "revisions": [ { "version": "v2", "updated": "2014-01-14T09:02:31.000Z" } ], "analyses": { "keywords": [ "viscosity solutions", "path dependent pdes", "path dependent semi-linear parabolic pdes", "well-known nonlinear feynman-kac formula", "non-markovian backward sdes" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.5971E" } } }