{ "id": "1109.1385", "version": "v1", "published": "2011-09-07T08:12:00.000Z", "updated": "2011-09-07T08:12:00.000Z", "title": "On the Rankin-Selberg problem in short intervals", "authors": [ "Aleksandar Ivić" ], "comment": "12 pages", "journal": "Moscow Journal of Combinatorics and Number Theory, vol. {\\bf 2}, issue 3, 2012, 3-17", "categories": [ "math.NT" ], "abstract": "If $$ \\Delta(x) \\;:=\\; \\sum_{n\\leqslant x}c_n - Cx\\qquad(C>0) $$ denotes the error term in the classical Rankin-Selberg problem, then we obtain a non-trivial upper bound for the mean square of $\\Delta(x+U) - \\Delta(x)$ for a certain range of $U = U(X)$. In particular, under the Lindel\\\"of hypothesis for $\\zeta(s)$, it is shown that $$ \\int_X^{2X} \\Bigl(\\Delta(x+U)-\\Delta(x)\\Bigr)^2\\,{\\roman d} x \\;\\ll_\\epsilon\\; X^{9/7+\\epsilon}U^{8/7}, $$ while under the Lindel\\\"of hypothesis for the Rankin-Selberg zeta-function the integral is bounded by $X^{1+\\epsilon}U^{4/3}$. An analogous result for the discrete second moment of $\\Delta(x+U)-\\Delta(x)$ also holds.", "revisions": [ { "version": "v1", "updated": "2011-09-07T08:12:00.000Z" } ], "analyses": { "subjects": [ "11N37", "44A15", "26A12" ], "keywords": [ "short intervals", "discrete second moment", "non-trivial upper bound", "error term", "rankin-selberg zeta-function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.1385I" } } }