{ "id": "1107.3266", "version": "v1", "published": "2011-07-17T00:36:38.000Z", "updated": "2011-07-17T00:36:38.000Z", "title": "Weighted Local Orlicz-Hardy Spaces with Applications to Pseudo-differential Operators", "authors": [ "Dachun Yang", "Sibei Yang" ], "comment": "80 pages, Dissertationes Math. (Rozprawy Mat.) (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\Phi$ be a concave function on $(0,\\infty)$ of strictly lower type $p_{\\Phi}\\in(0,1]$ and $\\omega\\in A^{\\mathop\\mathrm{loc}}_{\\infty}(\\mathbb{R}^n)$. We introduce the weighted local Orlicz-Hardy space $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$ via the local grand maximal function. Let $\\rho(t)\\equiv t^{-1}/\\Phi^{-1}(t^{-1})$ for all $t\\in(0,\\infty)$. We also introduce the $\\mathop\\mathrm{BMO}$-type space $\\mathop\\mathrm{bmo}_{\\rho,\\,\\omega}(\\mathbb{R}^n)$ and establish the duality between $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$ and $\\mathop\\mathrm{bmo}_{\\rho,\\,\\omega}(\\mathbb{R}^n)$. Several real-varaiable characterizations of $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$ are presented. Using the atomic characterization, we prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$. As applications, we show that the local Riesz transforms are bounded on $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$, the local fractional integrals are bounded from {\\normalsize$h^p_{\\omega^p}(\\mathbb{R}^n)$} to {\\normalsize$L^q_{\\omega^q}(\\mathbb{R}^n)$} when $q>1$ and from {\\normalsize$h^p_{\\omega^p}(\\mathbb{R}^n)$} to {\\normalsize$h^q_{\\omega^q}(\\mathbb{R}^n)$} when $q\\le 1$, and some pseudo-differential operators are also bounded on both $h^{\\Phi}_{\\omega}(\\mathbb{R}^n)$. All results for any general $\\Phi$ even when $\\omega\\equiv 1$ are new.", "revisions": [ { "version": "v1", "updated": "2011-07-17T00:36:38.000Z" } ], "analyses": { "subjects": [ "46E30", "42B35", "42B30", "42B25", "42B20", "35S05", "47G30", "47B06" ], "keywords": [ "weighted local orlicz-hardy space", "pseudo-differential operators", "applications", "local grand maximal function", "local riesz transforms" ], "note": { "typesetting": "TeX", "pages": 80, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3266Y" } } }