{ "id": "1106.0696", "version": "v1", "published": "2011-06-03T15:59:37.000Z", "updated": "2011-06-03T15:59:37.000Z", "title": "Counting points of fixed degree and given height over function fields", "authors": [ "Jeffrey Lin Thunder", "Martin Widmer" ], "comment": "23 pages", "doi": "10.1112/blms/bds087", "categories": [ "math.NT" ], "abstract": "Let $k$ be a finite field extension of the function field $\\bfF_p(T)$ and $\\bar{k}$ its algebraic closure. We count points in projective space $\\Bbb P ^{n-1}(\\bar{k})$ with given height and of fixed degree $d$ over the field $k$. If $n>2d+3$ we derive an asymptotic estimate for their number as the height tends to infinity. As an application we also deduce asymptotic estimates for certain decomposable forms.", "revisions": [ { "version": "v1", "updated": "2011-06-03T15:59:37.000Z" } ], "analyses": { "subjects": [ "11G50", "11G35" ], "keywords": [ "function field", "fixed degree", "counting points", "finite field extension", "deduce asymptotic estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.0696T" } } }