{ "id": "1105.1301", "version": "v1", "published": "2011-05-06T15:25:23.000Z", "updated": "2011-05-06T15:25:23.000Z", "title": "Homomorphisms from a finite group into wreath products", "authors": [ "Jan-Christoph Schlage-Puchta" ], "journal": "Arch. Math. (Basel) 96 (2011), no. 1, 27-30", "doi": "10.1007/s00013-010-0188-z", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group, $A$ a finite abelian group. Each homomorphism $\\phi:G\\to A\\wr S_n$ induces a homomorphism $\\bar{\\phi}:G\\to A$ in a natural way. We show that as $\\phi$ is chosen randomly, then the distribution of $\\bar{\\phi}$ is close to uniform. As application we prove a conjecture of T. M\\\"uller on the number of homomorphisms from a finite group into Weyl groups of type $D_n$.", "revisions": [ { "version": "v1", "updated": "2011-05-06T15:25:23.000Z" } ], "analyses": { "subjects": [ "20P05" ], "keywords": [ "finite group", "wreath products", "homomorphism", "finite abelian group", "natural way" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.1301S" } } }