{ "id": "1104.3047", "version": "v2", "published": "2011-04-15T13:16:27.000Z", "updated": "2011-04-18T12:47:27.000Z", "title": "Congruences involving $\\binom{2k}k^2\\binom{4k}{2k}m^{-k}$", "authors": [ "Zhi-Hong Sun" ], "comment": "14 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p>3$ be a prime, and let $m$ be an integer with $p\\nmid m$. In the paper, by using the work of Ishii and Deuring's theorem for elliptic curves with complex multiplication we solve some conjectures of Zhi-Wei Sun concerning $\\sum_{k=0}^{p-1}\\binom{2k}k^2\\binom{4k}{2k}m^{-k}\\mod {p^2}$.", "revisions": [ { "version": "v2", "updated": "2011-04-18T12:47:27.000Z" } ], "analyses": { "subjects": [ "11A07", "33C45", "11E25", "11G07", "11L10", "05A10", "05A19" ], "keywords": [ "congruences", "elliptic curves", "complex multiplication", "deurings theorem" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1104.3047S" } } }