{ "id": "1103.1104", "version": "v1", "published": "2011-03-06T06:42:29.000Z", "updated": "2011-03-06T06:42:29.000Z", "title": "Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling", "authors": [ "Ido Almog", "Yoav Sagi", "Goren Gordon", "Guy Bensky", "Gershon Kurizki", "Nir Davidson" ], "comment": "9 pages, 6 figures", "journal": "J. Phys. B: At. Mol. Opt. Phys. 44, 154006 (2011)", "doi": "10.1088/0953-4075/44/15/154006", "categories": [ "quant-ph", "cond-mat.stat-mech" ], "abstract": "Decoherence is a major obstacle to any practical implementation of quantum information processing. One of the leading strategies to reduce decoherence is dynamical decoupling --- the use of an external field to average out the effect of the environment. The decoherence rate under any control field can be calculated if the spectrum of the coupling to the environment is known. We present a direct measurement of the bath coupling spectrum in an ensemble of optically trapped ultracold atoms, by applying a spectrally narrow-band control field. The measured spectrum follows a Lorentzian shape at low frequencies, but exhibits non-monotonic features at higher frequencies due to the oscillatory motion of the atoms in the trap. These features agree with our analytical models and numerical Monte-Carlo simulations of the collisional bath. From the inferred bath-coupling spectrum, we predict the performance of well-known dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these sequences in experiment and compare the results to predictions, finding good agreement in the weak-coupling limit. Thus, our work establishes experimentally the validity of the overlap integral formalism, and is an important step towards the implementation of an optimal dynamical decoupling sequence for a given measured bath spectrum.", "revisions": [ { "version": "v1", "updated": "2011-03-06T06:42:29.000Z" } ], "analyses": { "keywords": [ "direct measurement", "understanding decoherence", "system-environment coupling", "dynamical decoupling sequence", "overlap integral formalism" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics B Atomic Molecular Physics", "year": 2011, "month": "Aug", "volume": 44, "number": 15, "pages": 154006 }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011JPhB...44o4006A" } } }