{ "id": "1102.4470", "version": "v1", "published": "2011-02-22T11:32:47.000Z", "updated": "2011-02-22T11:32:47.000Z", "title": "A note on the abelian sandpile in Z^d", "authors": [ "Mykhaylo Tyomkyn" ], "categories": [ "math.CO", "math-ph", "math.MP", "math.PR" ], "abstract": "We analyse the abelian sandpile model on $\\mathbbm{Z}^d$ for the starting configuration of $n$ particles in the origin and $2d-2$ particles otherwise. We give a new short proof of the theorem of Fey, Levine and Peres \\cite{FLP} that the radius of the toppled cluster of this configuration is $O(n^{1/d})$.", "revisions": [ { "version": "v1", "updated": "2011-02-22T11:32:47.000Z" } ], "analyses": { "keywords": [ "abelian sandpile model", "short proof", "starting configuration", "toppled cluster" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s10955-012-0564-0", "journal": "Journal of Statistical Physics", "year": 2012, "month": "Sep", "volume": 148, "number": 6, "pages": 1072 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012JSP...148.1072T" } } }