{ "id": "1101.0142", "version": "v2", "published": "2010-12-30T19:35:09.000Z", "updated": "2014-07-01T20:17:29.000Z", "title": "Asymptotic Improvements of Lower Bounds for the Least Common Multiples of Arithmetic Progressions", "authors": [ "Daniel M. Kane", "Scott D. Kominers" ], "comment": "10 pages", "doi": "10.4153/CMB-2014-017-0", "categories": [ "math.NT" ], "abstract": "For relatively prime positive integers $u_0$ and $r$, we consider the least common multiple $L_n:=\\mathrm{lcm}(u_0,u_1,\\ldots, u_n)$ of the finite arithmetic progression $\\{u_k:=u_0+kr\\}_{k=0}^n$. We derive new lower bounds on $L_n$ which improve upon those obtained previously when either $u_0$ or $n$ is large. When $r$ is prime, our best bound is sharp up to a factor of $n+1$ for $u_0$ properly chosen, and is also nearly sharp as $n\\to\\infty$.", "revisions": [ { "version": "v2", "updated": "2014-07-01T20:17:29.000Z" } ], "analyses": { "subjects": [ "11A05" ], "keywords": [ "lower bounds", "common multiple", "asymptotic improvements", "finite arithmetic progression", "relatively prime positive integers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.0142K" } } }