{ "id": "1012.3218", "version": "v1", "published": "2010-12-15T03:23:25.000Z", "updated": "2010-12-15T03:23:25.000Z", "title": "Convergence of the Dirichlet solutions of the very fast diffusion equation", "authors": [ "Kin Ming Hui", "Sunghoon Kim" ], "comment": "33 pages", "categories": [ "math.AP" ], "abstract": "For any $-10$, $0\\le u_0\\in L^{\\infty}(R)$ such that $u_0(x)\\le (\\mu_0 |m||x|)^{\\frac{1}{m}}$ for any $|x|\\ge R_0$ and some constants $R_0>1$ and $0<\\mu_0\\leq \\mu$, and $f,\\,g \\in C([0,\\infty))$ such that $f(t),\\, g(t) \\geq \\mu_0$ on $[0,\\infty)$ we prove that as $R\\to\\infty$ the solution $u^R$ of the Dirichlet problem $u_t=(u^m/m)_{xx}$ in $(-R,R)\\times (0,\\infty)$, $u(R,t)=(f(t)|m|R)^{1/m}$, $u(-R,t)=(g(t)|m|R)^{1/m}$ for all $t>0$, $u(x,0)=u_0(x)$ in $(-R,R)$, converges uniformly on every compact subsets of $R\\times (0,T)$ to the solution of the equation $u_t=(u^m/m)_{xx}$ in $R\\times (0,\\infty)$, $u(x,0)=u_0(x)$ in $R$, which satisfies $\\int_Ru(x,t)\\,dx=\\int_Ru_0dx-\\int_0^t(f(s)+g(s))\\,ds$ for all $0