{ "id": "1008.2055", "version": "v4", "published": "2010-08-12T06:51:48.000Z", "updated": "2012-06-19T18:42:24.000Z", "title": "Elements with r-th roots in finite groups", "authors": [ "Elaheh Khamseh", "Mohammed Reza R. Moghaddam", "Francesco G. Russo", "Farshid Saeedi" ], "comment": "7 pages; Fundamental revisions have been done", "categories": [ "math.GR" ], "abstract": "The probability that a randomly chosen element of a finite group is an $r$--th root (for any integer $r\\geq2$) has been studied largely in case $r=2$. Certain techniques may be generalized for $r>2$ and here we find the exact value of this probability for projective special linear groups. A result of density is placed at the end, in order to show an analogy with the case $r=2$.", "revisions": [ { "version": "v4", "updated": "2012-06-19T18:42:24.000Z" } ], "analyses": { "subjects": [ "20P05", "20D60" ], "keywords": [ "finite group", "r-th roots", "projective special linear groups", "exact value", "probability" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2055K" } } }