{ "id": "1007.4845", "version": "v1", "published": "2010-07-27T23:25:11.000Z", "updated": "2010-07-27T23:25:11.000Z", "title": "The Largest Subsemilattices of the Semigroup of Transformations on a Finite Set", "authors": [ "João Araújo", "Janusz Konieczny" ], "comment": "7 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "Let T(X) be the semigroup of full transformations on a finite set X with n elements. We prove that every subsemilattice of T(X) has at most 2^{n-1} elements and that there are precisely n subsemilattices of size exactly 2^{n-1}, each isomorphic to the semilattice of idempotents of the symmetric inverse semigroup on a set with n-1 elements.", "revisions": [ { "version": "v1", "updated": "2010-07-27T23:25:11.000Z" } ], "analyses": { "subjects": [ "20M20", "06A12" ], "keywords": [ "finite set", "largest subsemilattices", "symmetric inverse semigroup", "full transformations" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.4845A" } } }