{ "id": "1007.4732", "version": "v2", "published": "2010-07-27T14:25:34.000Z", "updated": "2010-07-30T12:02:13.000Z", "title": "Prime density results for Hecke eigenvalues of a Siegel cusp form", "authors": [ "Abhishek Saha" ], "comment": "8 pages. Minor changes made over previous version. To appear in Int. J. Number Theory", "categories": [ "math.NT" ], "abstract": "Let F in S_k(Sp(2g, Z)) be a cuspidal Siegel eigenform of genus g with normalized Hecke eigenvalues mu_F(n). Suppose that the associated automorphic representation pi_F is locally tempered everywhere. For each c>0 we consider the set of primes p for which |mu_F(p)| >= c and we provide an explicit upper bound on the density of this set. In the case g=2, we also provide an explicit upper bound on the density of the set of primes p for which mu_F(p) >= c.", "revisions": [ { "version": "v2", "updated": "2010-07-30T12:02:13.000Z" } ], "analyses": { "subjects": [ "11F46", "11F66", "11F70", "22E50" ], "keywords": [ "siegel cusp form", "prime density results", "explicit upper bound", "cuspidal siegel eigenform", "normalized hecke eigenvalues" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.4732S" } } }