{ "id": "1003.5973", "version": "v1", "published": "2010-03-31T05:39:21.000Z", "updated": "2010-03-31T05:39:21.000Z", "title": "The Bowman-Bradley theorem for multiple zeta-star values", "authors": [ "Hiroki Kondo", "Shingo Saito", "Tatsushi Tanaka" ], "comment": "17 pages", "journal": "J. Number Theory 132 (2012), no. 9, 1984-2002", "doi": "10.1016/j.jnt.2012.03.012", "categories": [ "math.NT", "math.CO" ], "abstract": "The Bowman-Bradley theorem asserts that the multiple zeta values at the sequences obtained by inserting a fixed number of twos between 3,1,...,3,1 add up to a rational multiple of a power of pi. We establish its counterpart for multiple zeta-star values by showing an identity in a non-commutative polynomial algebra introduced by Hoffman.", "revisions": [ { "version": "v1", "updated": "2010-03-31T05:39:21.000Z" } ], "analyses": { "subjects": [ "11M32", "05A19" ], "keywords": [ "multiple zeta-star values", "bowman-bradley theorem asserts", "multiple zeta values", "rational multiple", "non-commutative polynomial algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.5973K" } } }