{ "id": "1001.1824", "version": "v3", "published": "2010-01-12T09:07:03.000Z", "updated": "2010-11-11T09:30:26.000Z", "title": "On the Mellin transforms of powers of Hardy's function", "authors": [ "Aleksandar Ivić" ], "comment": "26 pages", "journal": "Hardy-Ramanujan Journal 33(2010), 32-58", "categories": [ "math.NT" ], "abstract": "Various properties of the Mellin transform function $$ {\\cal M}_k(s) := \\int_1^\\infty Z^k(x)x^{-s}dx $$ are investigated, where $$ Z(t) := \\zeta(1/2+it){\\bigl(\\chi(1/2+it)\\bigr)}^{-1/2}, \\quad \\zeta(s) = \\chi(s)\\zeta(1-s) $$ is Hardy's function and $\\zeta(s)$ is Riemann's zeta-function. Connections with power moments of $|\\zeta(1/2+it)|$ are established, and natural boundaries of ${\\cal M}_k(s)$ are discussed.", "revisions": [ { "version": "v3", "updated": "2010-11-11T09:30:26.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "hardys function", "mellin transform function", "riemanns zeta-function", "natural boundaries" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.1824I" } } }