{ "id": "1001.0378", "version": "v1", "published": "2010-01-03T15:12:02.000Z", "updated": "2010-01-03T15:12:02.000Z", "title": "$L^{\\infty}$ estimates and integrability by compensation in Besov-Morrey spaces and applications", "authors": [ "Laura Gioia Andrea Keller" ], "comment": "37 pages", "doi": "10.1515/ACV.2011.015", "categories": [ "math.AP" ], "abstract": "$L^{\\infty}$ estimates in the integrability by compensation result of H. Wente fail in dimension larger than two when Sobolev spaces are replaced by the ad-hoc Morrey spaces. However, in this paper we prove that $L^{\\infty}$ estimates hold in arbitrary dimension when Morrey spaces are replaced by their Littlewood Paley counterparts: Besov-Morrey spaces. As an application we prove the existence of conservation laws to solution of elliptic systems of the form $-\\Delta u= \\Omega \\cdot \\nabla u$ where $\\Omega$ is antisymmetric and both $\\nabla u$ and $\\Omega$ belong to these Besov-Morrey spaces for which the system is critical.", "revisions": [ { "version": "v1", "updated": "2010-01-03T15:12:02.000Z" } ], "analyses": { "subjects": [ "35J60", "58E20" ], "keywords": [ "besov-morrey spaces", "application", "integrability", "littlewood paley counterparts", "ad-hoc morrey spaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }