{ "id": "0912.3234", "version": "v1", "published": "2009-12-16T19:16:23.000Z", "updated": "2009-12-16T19:16:23.000Z", "title": "Linear response strength functions with iterative Arnoldi diagonalization", "authors": [ "J. Toivanen", "B. G. Carlsson", "J. Dobaczewski", "K. Mizuyama", "R. R. Rodriguez-Guzman", "P. Toivanen", "P. Vesely" ], "comment": "9 RevTeX pages, 11 figures, submitted to Physical Review C", "journal": "Phys.Rev.C81:034312,2010", "doi": "10.1103/PhysRevC.81.034312", "categories": [ "nucl-th" ], "abstract": "We report on an implementation of a new method to calculate RPA strength functions with iterative non-hermitian Arnoldi diagonalization method, which does not explicitly calculate and store the RPA matrix. We discuss the treatment of spurious modes, numerical stability, and how the method scales as the used model space is enlarged. We perform the particle-hole RPA benchmark calculations for double magic nucleus 132Sn and compare the resulting electromagnetic strength functions against those obtained within the standard RPA.", "revisions": [ { "version": "v1", "updated": "2009-12-16T19:16:23.000Z" } ], "analyses": { "subjects": [ "71.15.Mb", "21.60.Jz" ], "keywords": [ "linear response strength functions", "iterative arnoldi diagonalization", "particle-hole rpa benchmark calculations", "iterative non-hermitian arnoldi diagonalization method" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review C", "year": 2010, "month": "Mar", "volume": 81, "number": 3, "pages": "034312" }, "note": { "typesetting": "RevTeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 840312, "adsabs": "2010PhRvC..81c4312T" } } }