{ "id": "0912.2697", "version": "v2", "published": "2009-12-14T17:52:30.000Z", "updated": "2012-08-22T20:19:56.000Z", "title": "The Dehn function of SL(n;Z)", "authors": [ "Robert Young" ], "comment": "49 pages, 9 figures, revised version, to appear in Annals of Mathematics", "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that when n >= 5, the Dehn function of SL(n;Z) is quadratic. The proof involves decomposing a disc in SL(n;R)/SO(n) into triangles of varying sizes. By mapping these triangles into SL(n;Z) and replacing large elementary matrices by \"shortcuts,\" we obtain words of a particular form, and we use combinatorial techniques to fill these loops.", "revisions": [ { "version": "v2", "updated": "2012-08-22T20:19:56.000Z" } ], "analyses": { "subjects": [ "20F65", "22E40" ], "keywords": [ "dehn function", "replacing large elementary matrices", "combinatorial techniques", "varying sizes" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2697Y" } } }