{ "id": "0911.3385", "version": "v3", "published": "2009-11-17T19:41:10.000Z", "updated": "2010-06-26T01:59:01.000Z", "title": "A relationship between twisted conjugacy classes and the geometric invariants $Ω^n$", "authors": [ "Nic Koban", "Peter Wong" ], "comment": "13 pages", "journal": "Geom. Dedicata (2011) 151:233-243", "categories": [ "math.GR", "math.AT" ], "abstract": "A group $G$ is said to have the property $R_\\infty$ if every automorphism $\\phi \\in {\\rm Aut}(G)$ has an infinite number of $\\phi$-twisted conjugacy classes. Recent work of Gon\\c{c}alves and Kochloukova uses the $\\Sigma^n$ (Bieri-Neumann-Strebel-Renz) invariants to show the $R_{\\infty}$ property for a certain class of groups, including the generalized Thompson's groups $F_{n,0}$. In this paper, we make use of the $\\Omega^n$ invariants, analogous to $\\Sigma^n$, to show $R_{\\infty}$ for certain finitely generated groups. In particular, we give an alternate and simpler proof of the $R_{\\infty}$ property for BS(1,n). Moreover, we give examples for which the $\\Omega^n$ invariants can be used to determine the $R_{\\infty}$ property while the $\\Sigma^n$ invariants techniques cannot.", "revisions": [ { "version": "v3", "updated": "2010-06-26T01:59:01.000Z" } ], "analyses": { "subjects": [ "20F65", "E45", "55M20", "57M07" ], "keywords": [ "twisted conjugacy classes", "geometric invariants", "relationship", "infinite number", "generalized thompsons groups" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.3385K" } } }