{ "id": "0910.5402", "version": "v4", "published": "2009-10-28T15:12:03.000Z", "updated": "2012-11-29T09:36:46.000Z", "title": "New Beauville surfaces and finite simple groups", "authors": [ "Shelly Garion", "Matteo Penegini" ], "comment": "v4: 18 pages. Final version, to appear in Manuscripta Math", "categories": [ "math.GR", "math.AG" ], "abstract": "In this paper we construct new Beauville surfaces with group either $\\PSL(2,p^e)$, or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion.", "revisions": [ { "version": "v4", "updated": "2012-11-29T09:36:46.000Z" } ], "analyses": { "subjects": [ "14J10", "14J29", "20D06", "20H10", "30F99" ], "keywords": [ "finite simple groups", "beauville surfaces", "probabilistic group theoretical results", "low lie rank", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.5402G" } } }