{ "id": "0910.2260", "version": "v2", "published": "2009-10-12T22:15:54.000Z", "updated": "2011-10-14T21:04:58.000Z", "title": "Global well-posedness for the defocusing, cubic, nonlinear Schrodinger equation when n = 3 via a linear-nonlinear decomposition", "authors": [ "Benjamin Dodson" ], "comment": "26 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we prove global well-posedness and scattering for the defocusing, cubic nonlinear Schr{\\\"o}dinger equation in three dimensions when $n = 3$ when $u_{0} \\in H^{s}(\\mathbf{R}^{3})$, $s > 3/4$. To this end, we utilize a linear-nonlinear decomposition, similar to the decomposition used in [12] for the wave equation.", "revisions": [ { "version": "v2", "updated": "2011-10-14T21:04:58.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "nonlinear schrodinger equation", "linear-nonlinear decomposition", "global well-posedness", "defocusing", "cubic nonlinear" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.2260D" } } }