{ "id": "0908.2008", "version": "v1", "published": "2009-08-14T03:50:39.000Z", "updated": "2009-08-14T03:50:39.000Z", "title": "Bounding |ΞΆ(1/2 + it)| on the Riemann hypothesis", "authors": [ "Vorrapan Chandee", "Kannan Soundararajan" ], "comment": "8 pages", "doi": "10.1112/blms/bdq095", "categories": [ "math.NT", "math.CA" ], "abstract": "In 1924 Littlewood showed that, assuming the Riemann Hypothesis, for large t there is a constant C such that |\\zeta(1/2+it)| \\ll \\exp(C\\log t/\\log \\log t). In this note we show how the problem of bounding |\\zeta(1/2+it)| may be framed in terms of minorizing the function \\log ((4+x^2)/x^2) by functions whose Fourier transforms are supported in a given interval, and drawing upon recent work of Carneiro and Vaaler we find the optimal such minorant. Thus we establish that any C> (\\log 2)/2 is permissible in Littlewood's result.", "revisions": [ { "version": "v1", "updated": "2009-08-14T03:50:39.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "riemann hypothesis", "fourier transforms", "littlewoods result" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2008C" } } }