{ "id": "0907.1910", "version": "v1", "published": "2009-07-10T21:01:20.000Z", "updated": "2009-07-10T21:01:20.000Z", "title": "On the value-distribution of the Riemann zeta-function on the critical line", "authors": [ "Justas Kalpokas", "Jörn Steuding" ], "comment": "16 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "We investigate the intersections of the curve $\\mathbb{R}\\ni t\\mapsto \\zeta({1\\over 2}+it)$ with the real axis. We show that if the Riemann hypothesis is true, the mean-value of those real values exists and is equal to 1. Moreover, we show unconditionally that the zeta-function takes arbitrarily large real values on the critical line.", "revisions": [ { "version": "v1", "updated": "2009-07-10T21:01:20.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "critical line", "riemann zeta-function", "value-distribution", "arbitrarily large real values", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.1910K" } } }