{ "id": "0905.1642", "version": "v3", "published": "2009-05-11T15:44:25.000Z", "updated": "2011-11-19T17:46:09.000Z", "title": "Fast construction of irreducible polynomials over finite fields", "authors": [ "Jean-Marc Couveignes", "Reynald Lercier" ], "comment": "To appear in the Israel Journal of Mathematics", "categories": [ "math.NT", "math.AG" ], "abstract": "We present a randomized algorithm that on input a finite field $K$ with $q$ elements and a positive integer $d$ outputs a degree $d$ irreducible polynomial in $K[x]$. The running time is $d^{1+\\epsilon(d)} \\times (\\log q)^{5+\\epsilon(q)}$ elementary operations. The function $\\epsilon$ in this expression is a real positive function belonging to the class $o(1)$, especially, the complexity is quasi-linear in the degree $d$. Once given such an irreducible polynomial of degree $d$, we can compute random irreducible polynomials of degree $d$ at the expense of $d^{1+\\epsilon(d)} \\times (\\log q)^{1+\\epsilon(q)}$ elementary operations only.", "revisions": [ { "version": "v3", "updated": "2011-11-19T17:46:09.000Z" } ], "analyses": { "subjects": [ "11G20", "11Y16", "14H45", "68Q25" ], "keywords": [ "finite field", "fast construction", "elementary operations", "real positive function", "random irreducible polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.1642C" } } }