{ "id": "0904.0450", "version": "v2", "published": "2009-04-02T19:45:00.000Z", "updated": "2009-07-01T21:08:59.000Z", "title": "On conjugacy classes of SL$(2,q)$", "authors": [ "Edith Adan-Bante", "John M. Harris" ], "comment": "11 pages. Added references, corrected typos, improved presentation", "categories": [ "math.GR", "math.CO" ], "abstract": "Let SL(2,q) be the group of 2X2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least q-1 distinct conjugacy classes of SL(2,q). On the other hand, if q>3 is odd, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least (q+3)/2 distinct conjugacy classes of SL(2,q).", "revisions": [ { "version": "v2", "updated": "2009-07-01T21:08:59.000Z" } ], "analyses": { "subjects": [ "20G40", "20E45" ], "keywords": [ "distinct conjugacy classes", "noncentral conjugacy classes", "finite field", "2x2 matrices", "determinant" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.0450A" } } }